Improving Selectivity and Productivity of the Enzymatic Synthesis of Ampicillin with Immobilized Penicillin G Acylase
نویسندگان
چکیده
An experimental design was applied to improve the reaction conditions for enzymatic synthesis of ampicillin from phenylglycine methyl ester (PGME) and 6-aminopenicillanic acid (6-APA), catalyzed by penicillin G acylase from E. coli immobilized on an agarose-glyoxyl derivative. The presence and magnitude of interactions between reaction variables were estimated using a 2 factorial design. A batch reactor was employed to assess the influence of the following variables: pH, temperature, initial 6-APA concentration, buffer concentration, and the presence of methanol. Response variables were productivity, selectivity, and yield (based on initial 6-APA concentration). The best synthesis yield (56.9%) was at T = 4oC and pH 6.5. The highest productivity (49.3 × 10mM of antibiotic/min) was achieved at T = 25oC and pH 6.5. Our results indicate that it is possible to achieve high productivity for this system while maintaining a high selectivity and yield.
منابع مشابه
Optimization of Enzymatic Synthesis of Ampicillin Using Cross-Linked Aggregates of Penicillin G Acylase
Penicillin G acylase from E. coli TA1 was immobilized by Cross-Linked Enzyme Aggregates (CLEA), a new method for immobilization. This biocatalyst and commercial immobilized penicillin G acylase (PGA-450) were used to study the effect of pH, temperature and substrate concentration on the synthesis of ampicillin from phenyl glycine methyl ester (PGME) and 6-aminopenicillanic acid (6-APA). Compare...
متن کاملOptimization of Enzymatic Synthesis of Ampicillin Using Cross-Linked Aggregates of Penicillin G Acylase
Penicillin G acylase from E. coli TA1 was immobilized by Cross-Linked Enzyme Aggregates (CLEA), a new method for immobilization. This biocatalyst and commercial immobilized penicillin G acylase (PGA-450) were used to study the effect of pH, temperature and substrate concentration on the synthesis of ampicillin from phenyl glycine methyl ester (PGME) and 6-aminopenicillanic acid (6-APA). Compare...
متن کاملImproving the diastereoselectivity of penicillin G acylase for ampicillin synthesis from racemic substrates.
Semi-synthetic β-lactam antibiotics are synthesized enzymatically with the use of penicillin G acylase (PGA). Currently, PGA only exhibits weak diastereoselectivity with respect to the alpha amino group of rac-phenylglycine methyl ester (rac-PGME) when it is coupled with 6-aminopenicillanic acid to synthesize ampicillin. Therefore, we sought to improve the diastereoselectivity of PGA by targeti...
متن کاملEnzymatic Synthesis of Amoxicillin with Immobilized Penicillin G Acylase
The synthesis of amoxicillin with immobilized penicillin G acylase (PGA) in aqueous medium was investigated. The parameters studied were: time course of amoxicillin production, concentration of substrates: hydroxyphenylglycine methyl ester (HPGM) and 6-aminopeicillanic acid (6APA) and the e ect of enzyme (PGA) content and pH, under variable and constant conditions and temperature variations. In...
متن کاملIsolation of a Penicillin Acylase Producing E.coli and Kinetic Characterization of the Whole Cell Enzyme Activity
Penicillin acylase (EC 3.5.1.11) has been a target of study for a long time because of its pivotal role in the deacylation of the penicillin into the 6- aminopenicillanic acid (6-APA) and the side-chain organic acids. This property of penicillin acylase has been exploited commercially for large scale production of 6-APA, which is the key intermediate in the manufacture of semi-synthetic penicil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004